Glycine Betaine Catabolism Contributes to Pseudomonas syringae Tolerance to Hyperosmotic Stress by Relieving Betaine-Mediated Suppression of Compatible Solute Synthesis

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Glycine betaine catabolism contributes to Pseudomonas syringae tolerance to hyperosmotic stress by relieving betaine-mediated suppression of compatible solute synthesis.

Many bacteria can accumulate glycine betaine for osmoprotection and catabolize it as a growth substrate, but how they regulate these opposing roles is poorly understood. In Pseudomonas syringae B728a, expression of the betaine catabolism genes was reduced by an osmotic upshift to an intermediate stress level, consistent with betaine accumulation, but was increased by an upshift to a high stress...

متن کامل

Compatible Solute Engineering in Plants for Abiotic Stress Tolerance - Role of Glycine Betaine

Abiotic stresses collectively are responsible for crop losses worldwide. Among these, drought and salinity are the most destructive. Different strategies have been proposed for management of these stresses. Being a complex trait, conventional breeding approaches have resulted in less success. Biotechnology has emerged as an additional and novel tool for deciphering the mechanism behind these st...

متن کامل

Choline Catabolism to Glycine Betaine Contributes to Pseudomonas aeruginosa Survival during Murine Lung Infection

Pseudomonas aeruginosa can acquire and metabolize a variety of molecules including choline, an abundant host-derived molecule. In P. aeruginosa, choline is oxidized to glycine betaine which can be used as an osmoprotectant, a sole source of carbon and nitrogen, and as an inducer of the virulence factor, hemolytic phospholipase C (PlcH) via the transcriptional regulator GbdR. The primary objecti...

متن کامل

Genome-driven investigation of compatible solute biosynthesis pathways of Pseudomonas syringae pv. syringae and their contribution to water stress tolerance.

The foliar pathogen Pseudomonas syringae pv. syringae exhibits an exceptional ability to survive on asymptomatic plants as an epiphyte. Intermittent wetting events on plants lead to osmotic and matric stresses which must be tolerated for survival as an epiphyte. In this study, we have applied bioinformatic, genetic, and biochemical approaches to address water stress tolerance in P. syringae pv....

متن کامل

Glycine betaine transmethylase mutant of Pseudomonas aeruginosa.

The gene for glycine betaine transmethylase (gbt) was identified in Pseudomonas aeruginosa strain Fildes III by biochemical, physiological, and molecular approaches. Based on sequence analysis, the knockout gene corresponded to an open reading frame (ORF) named PA3082 in the genome of P. aeruginosa PAO1. The translated product of this ORF displayed similarity to transferases of different microo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Bacteriology

سال: 2013

ISSN: 0021-9193,1098-5530

DOI: 10.1128/jb.00094-13